Fibonacci sequence

By

Princess Browne

 

 

Generate a Fibonacci sequence in the first column using f (0) = 1, f (1) = 1,

F (n) = f (n-1) + f (n-2)

 

a.  Construct the ratio of each pair of adjacent terms in the Fibonacci sequence. What happens as n increases? What about the ratio of every second term? etc.

b.   Explore sequences where f (0) and f (1) are some arbitrary integers other than 1. If f (0) =1 and f (1) = 3, then your sequence is a Lucas Sequence. All such sequences, however, have the same limit of the ratio of successive terms.

 

 

 

The Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, who was also known as Fibonacci.

 

The following relation defines the Fibonacci sequence:

 

 
  F(n):=  
  \begin{cases}
    0             & \mbox{if } n = 0; \\
    1             & \mbox{if } n = 1; \\
    F(n-1)+F(n-2) & \mbox{if } n > 1. \\
   \end{cases}

 

The following spreadsheet will use the formula of f (n) = f (n-1) + f (n -2) to show the value of the Golden Ratio.

 

 

 

Formula:  Xn = F (n=1)/ F (n) = F (n) + F (n-1)/ F (n) = 1 + F (n-1)/F (n) = 1 + 1/ (F (n)/F (n-1)) = 1 + 1/Xn - 1

 

 

 

1

 

 

 

 

1

1

 

 

 

2

2

2

 

 

3

1.5

3

3

 

5

1.666666667

2.5

5

5

8

1.6

2.666666667

4

8

13

1.625

2.6

4.333333333

6.5

21

1.615384615

2.625

4.2

7

34

1.619047619

2.615384615

4.25

6.8

55

1.617647059

2.619047619

4.230769231

6.875

89

1.618181818

2.617647059

4.238095238

6.846153846

144

1.617977528

2.618181818

4.235294118

6.857142857

233

1.618055556

2.617977528

4.236363636

6.852941176

377

1.618025751

2.618055556

4.235955056

6.854545455

610

1.618037135

2.618025751

4.236111111

6.853932584

987

1.618032787

2.618037135

4.236051502

6.854166667

1597

1.618034448

2.618032787

4.236074271

6.854077253

2584

1.618033813

2.618034448

4.236065574

6.854111406

4181

1.618034056

2.618033813

4.236068896

6.854098361

6765

1.618033963

2.618034056

4.236067627

6.854103343

10946

1.618033999

2.618033963

4.236068111

6.85410144

17711

1.618033985

2.618033999

4.236067926

6.854102167

28657

1.61803399

2.618033985

4.236067997

6.85410189

46368

1.618033988

2.61803399

4.23606797

6.854101996

75025

1.618033989

2.618033988

4.23606798

6.854101955

121393

1.618033989

2.618033989

4.236067976

6.854101971

196418

1.618033989

2.618033989

4.236067978

6.854101965

317811

1.618033989

2.618033989

4.236067977

6.854101967

514229

1.618033989

2.618033989

4.236067978

6.854101966

832040

1.618033989

2.618033989

4.236067977

6.854101966

1346269

1.618033989

2.618033989

4.236067978

6.854101966

2178309

1.618033989

2.618033989

4.236067977

6.854101966

3524578

1.618033989

2.618033989

4.236067978

6.854101966

 

 

 

 

 

 

 

From the table, we will see that the first column is the value of n, the second column give us the value of the golden ratio (1.61), the third column gives us the square of golden ratio (2.618), and the fourth column gives us  the cube of the golden ratio (4.23) and so on.

 

Next, we want to see the table when f (0) and f (1) are some arbitrary integers other than 1. If f (0) =1 and f (1) = 3, then our sequence is a Lucas Sequence. All such sequences have the same limit of the ratio of successive terms.

 

 

 

 

3

3

 

 

 

4

4

4

 

 

7

7

2.333333

7

 

11

11

2.75

3.666667

11

18

18

2.571429

4.5

6

29

29

2.636364

4.142857

7.25

47

47

2.611111

4.272727

6.714286

76

76

2.62069

4.222222

6.909091

123

123

2.617021

4.241379

6.833333

199

199

2.618421

4.234043

6.862069

322

322

2.617886

4.236842

6.851064

521

521

2.61809

4.235772

6.855263

843

843

2.618012

4.236181

6.853659

1364

1364

2.618042

4.236025

6.854271

2207

2207

2.618031

4.236084

6.854037

3571

3571

2.618035

4.236062

6.854127

5778

5778

2.618034

4.23607

6.854093

9349

9349

2.618034

4.236067

6.854106

15127

15127

2.618034

4.236068

6.854101

24476

24476

2.618034

4.236068

6.854102

39603

39603

2.618034

4.236068

6.854102

64079

64079

2.618034

4.236068

6.854102

103682

103682

2.618034

4.236068

6.854102

167761

167761

2.618034

4.236068

6.854102

271443

271443

2.618034

4.236068

6.854102

439204

439204

2.618034

4.236068

6.854102

710647

710647

2.618034

4.236068

6.854102

1149851

1149851

2.618034

4.236068

6.854102

1860498

1860498

2.618034

4.236068

6.854102

 

 

 

 

 

 

 

 

1

 

 

 

 

5

5

 

 

 

6

1.2

6

 

 

11

1.833333333

2.2

11

17

17

1.545454545

2.833333333

3.4

5.6

28

1.647058824

2.545454545

4.666666667

7.5

45

1.607142857

2.647058824

4.090909091

6.636363636

73

1.622222222

2.607142857

4.294117647

6.941176471

118

1.616438356

2.622222222

4.214285714

6.821428571

191

1.618644068

2.616438356

4.244444444

6.866666667

309

1.617801047

2.618644068

4.232876712

6.849315068

500

1.618122977

2.617801047

4.237288136

6.855932203

809

1.618

2.618122977

4.235602094

6.853403141

1309

1.618046972

2.618

4.236245955

6.854368932

2118

1.61802903

2.618046972

4.236

6.854

3427

1.618035883

2.61802903

4.236093943

6.854140915

5545

1.618033265

2.618035883

4.23605806

6.854087089

8972

1.618034265

2.618033265

4.236071766

6.854107649

14517

1.618033883

2.618034265

4.23606653

6.854099796

23489

1.618034029

2.618033883

4.23606853

6.854102795

38006

1.618033973

2.618034029

4.236067766

6.85410165

61495

1.618033995

2.618033973

4.236068058

6.854102087

99501

1.618033987

2.618033995

4.236067947

6.85410192

160996

1.61803399

2.618033987

4.236067989

6.854101984

260497

1.618033988

2.61803399

4.236067973

6.85410196

421493

1.618033989

2.618033988

4.236067979

6.854101969

681990

1.618033989

2.618033989

4.236067977

0

 

As n increases, 

f (n+1)/f (n) = 1.618, f (n+2) / f (n) = 2.618, f (n +3) / f (n) =4.236, and f (n +4)/ f (n) = 6.854 and so fourth.

 

From the tables, we can see that the value of n does not determine the outcome of the table/sequences. I find it interesting how the fifth column of the last graph ends up being zero, as n increases the graph will generate a value for this column.

 

 

Return